



# Acido fluoridrico (HF)

## Cosa vi serve

Corpo diffusivo blu codice RAD1201
Piastra di supporto codice RAD121
Adattatore verticale codice RAD122 (opzionale)
Cartuccia chemiadsorbente codice RAD166



# **Principio**

La cartuccia codice RAD166 è in polietilene microporoso rivestito di trietanolammina (TEA) umida. L'acido fluoridrico gassoso è chemiadsorbito dalla TEA, è recuperato con acqua e dosato come ione fluoruro in cromatografia ionica o con elettrodo specifico.

La captazione è selettiva per l'acido fluoridrico: i suoi sali, eventualmente dispersi in aria contemporaneamente, non sono in grado di attraversare la parete diffusiva di *radiello*.

# Portata di campionamento

La portata di campionamento a 25 °C e 1013 hPa è di 187 cm³·min-¹.

### Effetto della temperatura, dell'umidità e della velocità dell'aria

La portata di campionamento è invariante con l'umidità nell'intervallo 15-90% e con la velocità dell'aria fra 0,1 e 10 m·s<sup>-1</sup>. L'effetto della temperatura è in corso di studio.

## Calcoli

Se m è la quantità in  $\mu g$  di ione fluoruro captata dalla cartuccia e t è il tempo di esposizione in minuti, la concentrazione ambientale C di HF in  $\mu g \cdot m^3$  è data da

$$C = \frac{1,053 \ m}{187 \ t} 1.000.000$$

dove 1,053 è il rapporto delle masse molecolari HF/F<sup>-</sup>(v. Analisi).

## **Esposizione**

La captazione dell'acido fluoridrico è lineare nell'intervallo di esposizione 10.000-50.000.000 µg·m-3·min.

#### Ambiente di lavoro

Nell'ambiente di lavoro suggeriamo di esporre *radiello* fra 15 minuti e 8 ore: è possibile la misurazione del valore di *ceiling*.

# **Ambiente esterno**

Sono suggerite esposizioni fra 2 ore e 14 giorni. Raccomandiamo di riparare *radiello* dalla pioggia con il box componibile codice RAD196.

# Limite di rivelabilità e incertezza

Il limite di rivelabilità è di 7  $\mu$ g·m³ in seguito ad esposizione di 24 ore. L'incertezza a 2 $\sigma$  è del 4,5% nell'intero intervallo di linearità della portata di campionamento.



## Edizione 01/2019



#### Durata e conservazione

Le cartucce sono stabili per almeno 12 mesi prima e 4 mesi dopo l'esposizione, se conservate al buio e a 4 °C. La data di scadenza è stampata sull'involucro di plastica. È consigliabile, trascorsi sei mesi dal loro ricevimento, analizzarne qualcuna prima dell'impiego sul campo, per verificarne la contaminazione di fondo. Scartarle se il loro contenuto di ione fluoruro è superiore a 2 µg.

Non usare tutte le cartucce dello stesso lotto; tenerne almeno due come bianco.

## **Analisi**

### Cromatografia ionica

Introdurre nella provetta di *radiello* 5 ml della stessa soluzione eluente utilizzata per la cromatografia. Agitare energicamente in vortex per 1-2 minuti. Lasciare riposare per 10 minuti, agitare a mano e iniettare nel cromatografo ionico senza altro trattamento.

Trattare allo stesso modo 1-2 cartucce non esposte e sottrarre il loro valore di bianco dalla risposta dei campioni.

#### Elettrodo specifico

Preparare come segue un tampone di forza ionica. Sciogliere 57 ml di acido acetico glaciale in 500 ml di acqua e aggiungervi 50 g di sodio cloruro e 0,3 g di sodio citrato. A solubilizzazione avvenuta, portare la soluzione a pH 5-5,5 (ottimale 5,3) con l'aggiunta di NaOH 10 M. Portare il volume a 1 l.

Introdurre 5 ml di acqua nella provetta contenente la cartuccia di radiello ed agitare energicamente per 1-2 minuti

in vortex, lasciar riposare per 10 minuti. In un bicchiere da 20 ml introdurre un'ancoretta magnetica, 10 ml di tampone e 1 ml della soluzione della cartuccia. Mettere in moto l'agitatore magnetico e misurare il potenziale con elettrodo specifico per fluoruri. Nelle condizioni di analisi suggerite, un buon elettrodo risponde linearmente fra 1 e 1000 mg·l<sup>-1</sup> di ione F<sup>-</sup> e con pendenza prossima a 59 (se V è espresso in mV).

## **IMPORTANTE:**

Usare sempre acqua a contenuto di fluoruri inferiore a 0,5 mg·l<sup>-1</sup>.

Sebbene la captazione di *radiello* sia assolutamente lineare nell'intero intervallo 10.000-50.000.000  $\mu g \cdot m^{-3} \cdot min$ , la linearità complessiva del metodo dipende dal comportamento dell'elettrodo. Assicurarsi, durante la realizzazione della retta di calibrazione, che l'elettrodo risponda linearmente e con pendenza 59  $\pm$  0,5 nell'intervallo di concentrazioni che interessa (tipicamente, 5-500 mg·l-¹ di ione F-).

Trattare allo stesso modo 1-2 cartucce non esposte e sottrarre il loro valore di bianco dalla risposta dei campioni.

